
Submitted on December 15, 2020 to the Notre Dame Journal of Formal Logic

Volume ??, Number ??,

Ordinal Arithmetic in the Category of Sets

James Baxter and Dustin Bryant

Abstract The elementary theory of the category of sets (ETCS) provides an
alternate foundation for set theory in the language of category theory. Precisely,
ETCS is a well-pointed topos theory with a natural number object. Earlier work
on arithmetic in ETCS has mainly focused on cardinal numbers modeled as sets.
In this paper, we consider the elements of the natural number object of ETCS as
natural numbers, representing the finite ordinals. We show how arithmetical oper-
ations can be constructed as functions within the category of sets. We also show
how integers can be constructed in terms of these natural numbers, and define
corresponding arithmetic operations on the integers. Finally, we discuss how our
work compares to other formulations of arithmetic and some of the philosophical
implications of our approach.

1 Introduction

The Elementary Theory of the Category of Sets (ETCS), proposed by Lawvere [5],
presents an axiomatization of sets and the functions between them in terms of con-
cepts from category theory. This may be viewed as an alternative presentation of set
theory, in contrast to the usual axiomatizations in terms of a set membership relation.
In ETCS members of sets are instead viewed as particular functions into those sets,
and we thus have elements of sets that are of a distinct sort to the sets themselves,
in contrast to the traditional approach in which everything is a set. Leinster [6] sug-
gests that such an approach more closely aligns with the working mathematician’s
intuitions since one may rightly ask, for example, what the elements of ⇡ are within
ZFC which seems counter to the nature of numbers.

Throughout much of the 20th century, axiomatic set theory has been developed
with the aim of using it as foundation for mathematics. As such, one of the earliest
projects was to encode the counting numbers in terms of sets and define arithmetic
upon them. In 1973, Osius [8] showed that ETCS and Zermelo-Fraenkel set theory
(ZF) are equivalent in a certain sense. It is thus possible to define arithmetic on

2010 Mathematics Subject Classification: Primary 03E10, 03E45; Secondary 03G30

Keywords: Elementary Theory of the Category of Sets, Elementary Topos of Sets, foun-

dations of mathematics, natural number object, ordinal arithmetic, set theory

1

2

ETCS sets much as it is in ZF. Indeed, such an approach was taken by Hatcher [4]
to define arithmetic on cardinal numbers in a categorical setting. Hatcher does also
define ordinal numbers in a manner closer to our approach below and proves the Peano
postulates for them, although he does not define arithmetic on such numbers.

However, as we noted above, the concept of elements of sets in ETCS di�ers from
that of other set theories. Thus, if we encode numbers as particular sets, we cannot
talk about a set of numbers in ETCS, nor do we have operations on numbers as func-
tions in the ETCS sense. It may be noted, however, that the approach of defining
numbers in terms of sets is not the only approach to defining numbers. For example,
Peano [9], without saying what zero is, defined the natural numbers only in terms of
zero and successors of zero, and Church [2] defined an encoding of numbers in terms
of functions.

In particular, we want to define a set of numbers as an ETCS set, with the numbers
themselves as elements of that set. We note that ETCS comes equipped with a natural
number object, so our approach is to just take that as our set of natural numbers. We
also wish to define arithmetic operators on this set as ETCS functions. To do so is
not trivial, since ETCS does not supply a direct means of defining arbitrary functions,
and we can thus only use the functions that follow from the axioms. In this paper, we
show that arithmetic operators can indeed be constructed in ETCS and prove basic
properties about them, in Section 3. Then, in Section 4, we also show that the set of
natural numbers in ETCS can be lifted to define the set of integers, as an example of
how more general sets of numbers may be constructed in ETCS. This demonstrates
that ETCS can serve as a viable alternative foundation for mathematics.

Next, we present a brief overview of the axioms of ETCS in order to aid under-
standing of the later sections, particularly drawing attention to how the axioms can
be used for defining arithmetic. After that, we present our construction of arithmetic
in Sections 3 and 4. Finally, we discuss some of the philosophical implications of our
work and conclude in Section 5.

2 The Elementary Theory of the Category of Sets

In this section, we briefly present the axioms of ETCS, particularly following the
axiomatization given in Halvorson [3]. However, for didactic reasons we present
the axioms in a di�erent order from that Halvorson uses. Our aim here is not to
present a full description of ETCS, but to make clear the foundation upon which we
are building arithmetic and present some important lemmas that we make use of in
our arithmetical proofs. We omit proofs of these lemmas as they are standard lemmas
that may be found in Halvorson.

Halvorson’s presentation of ETCS consists of 11 axioms, describing a category
Sets in category theoretic terms. The first axiom simply establishes that Sets is in-
deed a category, that is, it has an associative function composition operation � and
identity functions idX . This is, of course, foundational when working in category
theory, but needs to be included in order to produce an adequate axiomatization of
Sets. We take full advantage of the associativity of composition in our work, fre-
quently omitting parentheses around function compositions.

Axiom 1 (Sets is a Category) Sets consists of functions and sets. Each function
f has unique domain and codomain sets, and we write f : X ! Y to mean that X
is the domain of f and Y is the codomain of f . For any two functions f : X ! Y

3

and g : Y ! Z in Sets, there is a function g � f : X ! Z in Sets such that
h � (g � f) = (h � g) � f for any functions f , g and h. We often write gf for g � f .
For each set X in Sets, there is a function idX : X ! X such that idX � f = f for
any function f with codomain X and g � idX = g for any function g with domain X .
Occasionally, we just write id for idX when the set X is clear.

The axioms of ETCS frequently make use of concepts from category theory. One
such concept is the notion of a terminal object, which is an object that has a unique
morphism from each object to itself. Axiom 2 asserts the existence of such an object
in ETCS, a set which we refer to as 1. It also asserts that 1 is a separator, which
means functions are judged to be the same when their compositions with functions
having a domain of 1 are all the same.
Axiom 2 (Terminal Object) Sets contains a set 1 such that, for any set X , there
is a unique function �X : X ! 1. Furthermore, for any functions f, g : X ! Y , if
f � x = g � x for all functions x : 1 ! X , then f = g.

The set 1 may be seen intuitively as a single element set. Since a function from a
single element set into any other set X identifies exactly one element of X , we take
them to represent elements of X and write x 2 X for x : 1 ! X . It then follows
from the uniqueness of �1, that 1 does indeed have a single element, which must be
equal to both �1 and id1. Thus, while ETCS does not start with an axiomatization
of set membership, an intuitive notion of set membership can be defined within it.
Application of a function to an element of its domain can then be simply defined by
composing the function with the element.

The functions �X are useful for defining constant functions, since, for any function
y : 1 ! Y , y � �X : X ! Y represents the function that yields y when applied
to any x : 1 ! X . We use such functions at various points in our construction of
arithmetic. The separator property in Axiom 2 is also occasionally useful in proofs
of the laws of arithmetic, since it allows us to apply a form of function extensionality.

The dual notion to an initial object is that of a terminal object, which is an object
that has a unique morphism from itself to every object. Axiom 3 establishes that
the empty set, ;, is a terminal object of Sets. It also asserts that ; is indeed empty,
that is, there is no function x 2 ;. While the existence of the empty set is of great
importance in set theory in general, we have not found this axiom particularly useful
in our construction of arithmetic.
Axiom 3 (Empty Set) Sets contains a set ; such that for any setX there is a unique
function ↵X : ; ! X , and there is no function x : 1 ! ;.

Axiom 4 asserts the existence of Cartesian products of sets and provides for con-
struction of functions into Cartesian products from functions into their elements. In
particular, for x 2 X and y 2 Y , we have that hx, yi 2 X ⇥ Y . This axiom also
provides projection functions ⇡0 and ⇡1 to select the individual components of an
element of a Cartesian product. Note that we do not fix the types of ⇡0 and ⇡1 to
specific sets, but allow their types to be inferred from the context in which they are
used. This allows for much more compact statements of lemmas to be written, since
the Cartesian products in our construction of arithmetic can often be too complex to
succinctly annotate the projection functions with.
Axiom 4 (Cartesian Products) For any sets X and Y in Sets, there is a set X ⇥Y
and functions ⇡0 : X ⇥ Y ! X and ⇡1 : X ⇥ Y ! Y in Sets, such that for any

4

functions f : Z ! X and g : Z ! Y , there is a unique function hf, gi : Z ! X⇥Y
such that ⇡0 � hf, gi = f and ⇡1 � hf, gi = g.

As is usual in category theory, it is frequently helpful to express laws in the form of
commuting diagrams. Axiom 4 can be expressed in such a diagram as shown below.

Z

X ⇥ Y

X Y

hf,gif g

⇡0 ⇡1

In addition to functions hf, gi, we have the below definition that allows us to construct
the Cartesian product of two functions to act on them in parallel.

Definition 2.1 For any two functions f : X ! Z and g : Y ! W , we define
f ⇥ g : X ⇥ Y ! Z ⇥W to mean hf⇡0, g⇡1i.

Since arithmetical functions such as addition and multiplication are binary func-
tions, they have a Cartesian product as their domain. We thus make frequent use of
Axiom 4 in our construction of arithmetic. In particular, it is useful to state here some
lemmas that we use in the proofs for our construction of arithmetic. The proofs of
these lemmas follow easily from ⇡0 � hf, gi = f and ⇡1 � hf, gi = g, and the fact
that the functions hf, gi are unique.

Lemma 2.2 ha, bif = haf, bfi

Lemma 2.3 (f ⇥ g)ha, bi = hf � a, g � bi

Lemma 2.4 (x⇥ y) � (a⇥ b) = (x � a)⇥ (y � b)

Lemma 2.5 ha, bi = hc, di () a = c ^ b = d

The dual of Cartesian products is coproducts, which may be viewed as representing
the disjoint union of two sets. Axiom 5 asserts the existence of coproducts in ETCS
and provides coprojection functions i0 and i1 to map into each side of a coproduct.
While we use Cartesian products frequently in our construction of arithmetic, co-
products are only used in a few facts and constructions that we have found in other
sources. We refer to these facts where they are used later in this paper, since they do
not form a large part of our work.

Axiom 5 (Coproducts) For any sets X and Y in Sets, there is a set X
`

Y and
functions i0 : X ! X

`
Y and i1 : Y ! X

`
Y inSets, such that for any functions

f : X ! Z and g : Y ! Z, there is a unique function f q g : X
`

Y ! Z such
that (f q g) � i0 = f and (f q g) � i1 = g.

ETCS also makes use of the notions of monomorphisms and epimorphisms, which
have their standard category theoretical definitions as shown below. The axioms of
ETCS are such that it can be shown that these notions correspond to the notions of
injectivity and surjectivity respectively (a proof of this can be found in Halvorson).
We also have the standard notion of an isomorphism, and it holds that a function in
Sets is an isomorphism if and only if it is both a monomorphism and an epimorphism.

5

Definition 2.6 (monomorphism) A function f : X ! Y is said to be a monomor-

phism if fg = fh implies g = h for any functions g, h : Z ! X .

Definition 2.7 (epimorphism) A function f : X ! Y is said to be an epimorphism

if gf = hf implies g = h for any functions g, h : X ! Z.

Definition 2.8 (isomorphism) A function f : X ! Y is said to be an isomorphism

if there is a function g : Y ! X such that g � f = idX and f � g = idY , and we say
that X and Y are isomorphic.

In particular, we take monomorphisms to define subobject or subsets, since they
characterise an injection from one set to another. This is captured by the definition
below.

Definition 2.9 (subobject) A subobject or subset of a set X is a set A together with
a monomorphism m : A ! X .

We can then expand our notion of set membership to allow elements of a set to
also be members of its subsets, by introducing a notion of relative membership as
shown below. This captures the idea of there being a member of the subset that can
be injected into the superset by the monomorphism defining the subset relationship,
and for which the result of that injection is the corresponding element of the superset.

Definition 2.10 (relative member) If A and m : A ! X form a subobject of X
then, for any x 2 X , we say that x 2 A relative to X whenever there is some a 2 A
such that x = ma, and we write x 2X A.

Axiom 6 asserts the existence of equalizers in ETCS, that is, a set E and a function
m : E ! X that makes functions f, g : X ! Y equal when composed with them. It
is also the case that there is a mapping between di�erent equalizers of the same two
functions. From this fact it can be shown that any equalizer is a monomorphism, and
hence defines a subobject. Axiom 6 is thus useful in that it allows us to define subsets
of the form {x 2 X|f � x = g � x} for any functions f, g : X ! Y . We found this
useful for constructing an equivalence relation when defining the set of integers.

Axiom 6 (Equalizers) For any functions f, g : X ! Y in Sets, there is a set E
and function m : E ! X in Sets such that fm = gm and, for any other set F and
function h : F ! X , there is a unique function k : F ! E such that mk = h

Such a notion of an equivalence relation over an ETCS set can be defined in general
as subset of a Cartesian product X ⇥X , using the idea of relative membership. This
allows us to state the definition of an equivalence relation in ETCS in a format similar
to that of the usual definition, as shown below.

Definition 2.11 (equivalence relation) A subobject R of X ⇥ X is said to be an
equivalence relation on X when, for any x, y, z 2 X , we have that hx, xi 2X⇥X R,
hx, yi 2X⇥X R whenever hy, xi 2X⇥X R, and hx, zi 2X⇥X R whenever
hx, yi 2X⇥X R and hy, zi 2X⇥X R.

Given an equivalence relation R on a set X , it is useful to be able to construct
its quotient X/R, and indeed we need such a construction for defining the integers.
Axiom 7 asserts the existence of such quotients in ETCS, along with a function q that
allows us to map any element of X into its equivalence class in X/R.

6

Axiom 7 (Equivalence Classes) For any equivalence relation R on X in Sets, there
is a set X/R and a function q : X ! X/R in Sets such that hx, yi 2X⇥X R if and
only if q � x = q � y, and for any function f : X ! Y such that hx, yi 2X⇥X R
implies f � x = f � y, there is a unique function f : X/R ! Y such that f � q = f .

Axiom 7 also provides for the lifting of functions with a a domain ofX to functions
on the quotient X/R in a way that is consistent with q. This may be expressed using
the commuting diagram below, which we instantiate as part of defining operators on
the integers. The resulting diagrams are helpful to understanding proofs of certain
properties of such operators. The function q is in fact a type of coequalizer, the dual
of an equalizer, and also an epimorphism.

X Y

X/R

f

q
f

Another concept that can be applied to subsets is the notion of a characteristic

function, that is, a function that is true for elements of a particular set and false other-
wise. In ETCS, since such a function must have its own domain, we only make such
a determination about elements of that domain, and hence we must have character-
istic functions defined by subsets. Axiom 8 defines a set of two truth values, t and
f representing true and false respectively, and asserts the existence of characteristic
functions in ETCS. The properties of characteristic functions are defined using the
category-theoretic notion of a pullback. This captures the fact that the diagram shown
in the axiom commutes, so that any relative member of the subset gives an output of
true when composed with the characteristic function. It also posits the existence of
a function mapping from a “wider” commuting diagram into the inner commuting
diagram, with the consequence that any element for which the characteristic function
is true must be a relative member of the subset. The axiom thus captures the fact that
a value is a member of the subset if and only if its characteristic function is true for
that value.

Axiom 8 (Truth-Value Object) There is a set, ⌦, with exactly two elements t and
f such that for any set X , and subobject m : B ! X , there is a unique function
�B : X ! ⌦ such that the following diagram is a pullback:

B 1

X ⌦

m t

�m

That is, �m �m = t��B and, for any set Z and functions f : Z ! X and g : Z ! 1
such that �m � f = t � g, there is a unique function h : Z ! B such that f = m � h
and g = �B � h.

This construction of characteristic functions can be used to construct functions on
the truth value set ⌦ that represent predicate logic operations within ETCS. Axiom 8
thus gives us a way to embed logic within ETCS, and we use this to define a less-
than operator on the natural numbers in Section 3.7. In combination with Axiom 6,
this also provides a way to construct subsets corresponding to arbitrary predicates,
creating an analog of the ZF subset axiom.

7

As noted previously, ETCS has a natural number object, N, which we take as our
representation of the natural numbers. The existence of this object and its properties
are established by Axiom 9. The elements of N provided by this axiom are a zero ele-
ment z and elements constructed by applying a successor function s to z one or more
times. This gives a similar construction of the natural numbers to that of Peano [9],
and indeed Hatcher [4] has proved that the Peano postulates hold for these functions,
although he did not construct arithmetic operators on them.

Axiom 9 (Natural Number Object) There is an object N, and functions z : 1 ! N
and s : N ! N such that for any other set X with functions q : 1 ! X and
f : X ! X , there is a unique function u : N ! X such that uz = q and us = fu.

Axiom 9 also provides for constructing functions from N to any other set by defin-
ing the e�ect of the desired function on z and for each s applied to a number. The
form of such constructions may be visualised using the commuting diagram shown
below. This thus gives a way of defining functions on natural numbers by recursion.
Additionally, such functions are unique, so by constructing two functions that both
satisfy the same diagram (that is, with the same q and f functions), we can prove the
equality of those functions by induction. This can, using the embedding of logic from
Axiom 8, be extended to prove arbitrary facts by induction by showing equality to a
constant true function.

1 N N

NN NN

z

q

s

u u

f

While in ETCS we view functions as representing members of a set and mappings
between them, it is also useful to have a set whose members represent functions.
Axiom 10 provides for the existence of exponential objects of the form Y X , which
represent sets of functions from X to Y . It also supplies a transpose operator] to
convert functions to members of the exponential set and an evaluation function eY to
evaluate the transposed functions as the original.

Axiom 10 (Exponential Objects) For any sets A and X in Sets, there is a set
XA and a function eX : A ⇥ XA ! X in Sets such that, for any set Z and
function f : A ⇥ Z ! X , there is a unique function f]

: Z ! XA such that
eX � (idA ⇥ f]

) = f .

It is helpful to view this axiom in terms of the commuting diagram shown below,
particularly when constructing transposes of some of the more complex functions
we encountered in constructing our arithmetic. A particular point of note is that the
domain of the function f in the diagram is a Cartesian product, whereas the domain of
the transpose function is only the second component of the Cartesian product, with the
first component moved to the function “inside” the exponential object. The transpose
operation thus represents a form of function currying (named for the logician Haskell
Curry), in which a two argument function is converted to a single argument function
that outputs a function taking the remaining argument. This is very important in our
construction of arithmetic, as most of the arithmetic operators are binary operators,
and the functions constructed by Axiom 9 are single argument functions. We thus
use this axiom together with Axiom 9 to construct curried versions of the binary

8

arithmetic operators.
X ⇥ ZX Z

X ⇥ Y

eZ

idX⇥f]

f

Once we have curried versions of the functions we desire, they can be uncurried
using an inverse transpose operator [, defined as shown below by evaluating the cross
product of a transpose function with the identity function.

Definition 2.12 (inverse transpose) Suppose that f : Z ! XA is a function then
we define f [

: Z ⇥A ! X by f [
= eX � (id ⇥ f).

We also have the following lemmas showing that [functions as an inverse of]:

Lemma 2.13 For any function f : A⇥ Z ! X , we have (f]
)
[
= f .

Lemma 2.14 For any function f : Z ! XA
, we have (f [

)
]
= f .

We also note that any function g : Y ! Z can be lifted to a function XA ! Y A

on elements of the exponential object, via the definition below. This may be viewed
as composing g with the function represented by an element of XA.

Definition 2.15 (transpose function) Suppose that g : Y ! Z is a function then
we define the transpose gA : XA ! Y A by gA = (g � eY)].

Such functions are useful at various points while constructing our arithmetic op-
erators in terms of exponential objects. We additionally have the following lemmas
from Halvorson [3] allowing us to change between these forms of functions on expo-
nential sets, which we use in our proofs of arithmetical properties.

Lemma 2.16 For functions f : A⇥X ! Y and g : Y ! Z, (g � f)] = gA � f]
.

Lemma 2.17 For functions f : X ! Y and g : Y ! ZA
, (g�f)[= g[�(idA⇥f).

Finally, Axiom 11 gives a statement of the axiom of choice in ETCS terms. While
this is useful to complete the set of axioms, it is not required for the proof of basic
properties of arithmetic, so we do not make further use of it here.

Axiom 11 (Axiom of Choice) For any epimorphism f : X ! Y in Sets, there is
a function s : Y ! X such that fs = idY .

Next, we proceed to use the axioms described above to construct arithmetic oper-
ators on the natural numbers and prove facts about them.

3 Natural Number Arithmetic in ETCS

Having described the axioms of ETCS, we now present our definitions for addition,
multiplication, and exponentiation on the natural number object N. These operators
are binary operators, each represented by a function N ⇥ N ! N. We observe that
Axiom 9 provides only for defining functions with a domain of N, so we use it to
define curried versions of the operators as functions N ! NN, which we then un-
curry using the [transpose operator. The form of Axiom 10 is such that the input to
these curried functions represents the second argument of the corresponding uncur-
ried functions. We use Axiom 9 to define these curried functions, which represents
defining an operator by recursion in the second argument.

9

Considering the commuting diagram of Axiom 9, with X set to NN, we obtain
the commuting diagram shown below. The function u : N ! NN is the curried
function we wish to obtain, and we need to supply the two functions q : 1 ! NN and
f : NN ! NN to define it. We may view q as a function representing the application
of the operator under construction with zero as its second argument, which is the
base case of the recursion. Likewise, f maps a function representing the e�ect of
applying the operator with n as its second argument to a function representing the
e�ect of applying it with n + 1 as its second argument, for any natural number n.
Thus, f represents the recursive case of the construction of our curried operator.

1 N N

NN NN

z

q

s

u u

f

In addition to constructing the operators, we also prove various equations that they
are expected to satisfy. We can in some cases perform a simple calculational proof
which amounts to unwrapping definitions. It is often the case, however, that many of
the results can only be proven by induction which corresponds to defining recursive
functions encoding each side of an equation. For example, to prove x + y = y + x
we construct functions (x, y) 7! x + y and (x, y) 7! y + x. We construct these
in a curried form, representing y 7! (x 7! x + y) and y 7! (x 7! y + x) using
Axiom 9, choosing q and f functions that are the same for each. The uniqueness
property of Axiom 9 then yields the desired equality. This approach can be extended
for proofs involving more than two variables by considering, for example, functions
N ! NN⇥N.

Having described our general approach to construct operators on the natural num-
bers and prove properties about them, we now present the construction of each of the
operators, stating the q and f functions in each case. After presenting the construc-
tion of each operator, we present the properties it satisfies, briefly stating their proofs
using the above approach.

3.1 Addition on Naturals As discussed above, we define a curried addition function
u+ : N ! NN using Axiom 9. To motivate the definitions for q and f , which uniquely
define u+, we use lambda calculus to clearly express how we would like q and f to
behave. The function q : 1 ! NN represents a function �m. m + 0. The function
f : NN ! NN represents a function (�m. m+ n) 7! (�m. (m+ n) + 1), that is, it
returns a function that adds one to the result of its input function. We satisfy the first
condition by taking q to be ⇡]

0
: 1 ! NN satisfying the following diagram (which

exists uniquely by Axiom 10):

N⇥ NN N

N⇥ 1

eN

id⇥⇡]
0 ⇡0

This clearly satisfies the desired property, since it is the element of NN that, when
applied with the evaluation function eN, returns its input unchanged.

For the function f : NN ! NN, we need to choose a function that satisfies
u+(s(n)) = f(u+(n)) for all n. That is, we want a function that given an “add

10

n” function, returns an “add n+1” function. This is provided for by sN : NN ! NN,
which is defined as (s�eN)] (from Definition 2.15) and satisfies the following diagram
(again, existence and uniqueness is ensured by Axiom 10):

N⇥ NN N

N⇥ NN N

eN

id⇥sN

eN

s

So sN defines the function that takes a function and has the e�ect, when applied with
eN, of that function, plus applying s (“adding one”) to its result.

Plugging q = ⇡]
0

and f = sN into Axiom 9, we then obtain u+ : N ! NN, which
satisfies the diagram below.

1 N N

NN NN

z

⇡]
0

s

u+ u+

sN

We then obtain a function add : N⇥N ! N defined by add = u+
[
= eN�(id⇥u+).

For hm,ni 2 N⇥ N, we have

add(hm,ni) = eN � (id⇥ u+) � hm,ni = eN � hm,u+(n)i

So, add(hm,ni) constructs an “add n” function and applies it to m. We now show
that this really does have all the usual properties of addition.
Example 1 + 1 = 2:

1 + 1 = add(hsz, szi) (change of notation)
= eN � (id⇥ u+) � hsz, szi (definition of add)
= eN � hsz, u+szi (Lemma 2.3)

= eN � hsz, sNu+zi (diagram defining u+)

= eN � hsz, sN⇡]
0
i (diagram defining u+)

= eN � (id⇥ sN) � (id⇥ ⇡]
0
) � hsz, idi (Lemma 2.3)

= s � eN � (id⇥ ⇡]
0
) � hsz, idi (diagram defining sN)

= s � ⇡0 � hsz, idi (diagram defining ⇡]
0
)

= s � sz (Axiom 4)
= 2 (definition of 2)

Many of the other proofs in this paper consist of applications of similar proof steps
to those used above, particularly applying the definition of add and u+, and applying
Cartesian product lemmas such as Lemma 2.3. We thus omit annotation of proof
steps in aligned proofs after this point, to avoid needless repetition.

3.2 Properties of Addition Having defined addition on the naturals, we should now
verify that add behaves like ordinary addition. We show that add is commutative,
associative, and respects zero and the successor operator.

11

Respects Zero on Right: First we show that m+ 0 = m.

m+ 0 = add(hm, zi)
= eN � (id⇥ u+) � hm, zi
= eN � hm,u+zi

= eN � hm,⇡]
0
i

= eN � (id⇥ ⇡]
0
)hm,u+zi

= ⇡0hm,u+zi
= m

This proof only relied on unraveling definitions, however often we will need to use
induction as in the next lemma.
Respects Zero on Left: Now we show that 0+n = n. Consider the following diagram:

1 N N

N N

z

z

s

w w

s

From Axiom 9 there is a unique w : N ! N such that w(z) = z and ws = sw.
Consider the function add � hz�N, idi : N ! N. From the fact that m + 0 = m we
have that

add � hz�N, idi(z) = add � hz(�Nz), zi = add � hz, zi = z

We also have that:

(add � hz�N, idi) � s
= add � hz�Ns, si
= add � hz�N, si
= eN � (id⇥ u+) � hz�N, si
= eN � hz�N, usi
= eN � hz�N, s

Nu+i
= eN � (id⇥ sN) � hz�N, u+i
= s � eN � hz�N, u+i
= s � eN � (id⇥ u) � hz�N, idi
= s � (add � hz�N, id)i

We have that add�hz�N, idi satisfies the same properties asw, sow = add�hz�N, idi.
However, it is also clear that id(z) = z and id � s = s = s � id, so w = id. We thus
have that add � hz�N, idi = id so, for any n 2 N:

0 + n = add � hz, ni = add � hz�Nn, ni = add � hz�N, idi � n = id � n = n.

While the above lemma closely follows our strategy discussed above by setting
g = add � hz�N, idi and f = id, the next example is more technical and presents a
general technique of composing flat and sharp together.

12

Commutes Successor (m+ S(n) = S(m) + n): Before we can generally establish that
m+ S(n) = S(m) + n, we must first show that m+ S(n) = S(m+ n).

m+ S(n) = add(hm, sni)
= eN(id⇥ u+)hm, sni
= eNhm,u+sni
= eNhm, sNu+ni
= eN(id⇥ sN)hm,u+ni
= s � eNhm,u+ni
= s � add(hm,ni)
= S(m+ n)

Now we show that m+ S(n) = S(m) + n.
Consider the following diagram †:

1 N N

NN NN

z

(s⇡0)
]

s

sN

We aim to show that both (add � (id⇥ s))] and (add � (s⇥ id))
]
: N ! NN satisfy

this diagram. First, consider that:

eN � (id⇥ ((add � (id⇥ s))] � z))
= eN � (id⇥ (add � (id⇥ s))]) � (id⇥ z)

= add � (id⇥ s) � (id⇥ z)

= add � (id⇥ sz)

= eN � (id⇥ u+) � (id⇥ sz)

= eN � (id⇥ u+sz)

= eN � (id⇥ sNu+z)

= eN � (id⇥ sN⇡]
0
)

= s � eN � (id⇥ ⇡]
0
)

= s � ⇡0

This satisfies the same property as (s⇡0)
] so we have, by Axiom 10, that

(s⇡0)
]
= [add � (id⇥ s)]] � z.

We have shown that the triangle commutes under [add � (id ⇥ s)]]. Now we
show that it makes the square commute as well. To this end we first show that
s � add � (id ⇥ s) = add � (id ⇥ s) � (id ⇥ s).

13

Let hm,ni 2 N⇥ N be an arbitrary element then

(s � add � (id ⇥ s)) hm,ni = s � addhm, sni
= S(m+ S(n)) = m+ S(S(n))

= addhm, ssni
= add � (id ⇥ s)hm, sni
= [add � (id ⇥ s) � (id ⇥ s)] hm,ni

It follows by Axiom 2 that s � add � (id ⇥ s) = add � (id ⇥ s) � (id ⇥ s).
Now we observe that, by Lemmas 2.13 and 2.17,

s � add � (id ⇥ s) =
⇣
(s � add)]

⌘[
� (id ⇥ s) =

h
(add � (id ⇥ s))] � s

i[

and by taking sharps of both sides we arrive at

(add � (id ⇥ s))] � s = [s � add � (id ⇥ s)]] = sN [add � (id ⇥ s)]]

This proves that (add � (id ⇥ s))] makes the square commute and hence satisfies
the entire diagram. Now we would like to show that (add � (s ⇥ id))

] satisfies this
as well. To this end, consider an arbitrary element hn, idi of N ⇥ 1.

eN � (id⇥ ((add � (s⇥ id))
] � z)) � hn, idi

= eN � (id⇥ (add � (s⇥ id))
]
) � (id⇥ z) � hn, idi

= eN � (id⇥ (add � (s⇥ id))
]
) � hn, zi

= add � (s⇥ id) � hn, zi
= addhsn, zi
= sn

= s⇡0hn, idi

It follows by Axiom 2 that eN �
⇣
id⇥ ([add � (s⇥ id)]

] � z)
⌘
= s⇡0. This satisfies

the same property as (s⇡0)
] so, by Axiom 10, (s⇡0)

]
= (add � (s⇥ id))

] � z. In
other words, [add � (s⇥ id)]] makes the triangle commute; all that remains to show
is that [add � (s⇥ id)]] makes the square commute as well.

We essentially only have to prove the dual results as before. Let hm,ni 2 N⇥ N
be arbitrary then

(s � add � (s⇥ id)) hm,ni = s � addhsm, ni
= S(S(m) + n) = S(m) + S(n)

= addhsm, sni
= add � (s⇥ s)hm,ni

it follows from Axiom 2 that (s � add � (s⇥ id)) = add � (s⇥ s).

14

Again we observe that

s � add � (s⇥ id) = add � (s⇥ s) = [add � (s⇥ id)]][� (id ⇥ s)

=

h
(add � (s⇥ id))] � s

i[

and by taking sharps we arrive at

[add � (s⇥ id)]] � s = [s � add � (s⇥ id)]] = sN � [add � (s⇥ id)]]

We conclude, therefore, that both (add � (id ⇥ s))] and (add � (s ⇥ id))
]

satisfy diagram † it follows that (add � (id ⇥ s))] = (add � (s ⇥ id))
], hence

add � (id⇥ s) = add � (s⇥ id). Finally, we arrive at

S(a) + b = addhsa, bi
= add(s⇥ id)ha, bi
= add(id ⇥ s)ha, bi
= addha, sbi
= a+ S(b)

To summarize, we have proven that S(m) + n = m+ S(n) = S(m+ n).
Commutative: Consider the diagram

1 N N

NN NN

z

⇡]
0

s

sN

It can be shown that (add � h⇡1,⇡0i)] is precisely the function which satisfies this
diagram. By using the previous result it is straight forward albeit tedious to show.
Importantly, since the above is the defining diagram for u+ it follows that addition is
commutative.
Associative: Consider the following commuting diagram.

1 N N

NN⇥N NN⇥N

z

(add�⇡0)
]

s

sN⇥N

By showing that both (add�(add⇥id))
] and (add�(id⇥add)�h⇡0⇡0, h⇡1⇡0,⇡1ii)]

satisfy this diagram, associativity can easily be shown.
Cancellative (a+ c = b+ c =) a+ b): We aim to show

a+ c = b+ c () a = b

by constructing functions N ! ⌦
N⇥N representing each side, and showing that they

both satisfy the same Axiom 9 diagram and so are equal. The input to these func-
tions is taken to represent the variable c, so that we e�ectively prove the above fact
by induction on c. We can represent equality of natural numbers by the function
��N : N ⇥ N ! ⌦, which is the characteristic function of �N = hidN, idNi, and we
have, for any a, b 2 N,

a = b () ��N � ha, bi = t

15

This follows from the pullback diagram below, which we obtain from Axiom 8. The
forward implication follows from the commuting square on the bottom-right. Ex-
plicitly, if a = b then we have ��Nha, bi = ��Nha, ai = ��N�(a) = t�X(a) = t.
Conversely, if ��N � ha, bi = t then, from the pullback, we have a function x : 1 ! N
with ha, bi = �N(x), and then

a = ⇡0ha, bi = ⇡0�(x) = ⇡0hidX , idXi � x
= idX(x)

= ⇡1hidX , idXi � x = ⇡1�(x) = ⇡1ha, bi = b

1

N 1

N⇥ N ⌦

id1

ha,bi

x

�N

�N

t

��N

We can then represent the equation predicate a + c = b + c by the function
(��N

⌦
addh⇡0⇡0,⇡1i, addh⇡1⇡0,⇡1i

↵
)
], which satisfies the following diagram:

(N⇥ N)⇥ ⌦
N⇥N

⌦

(N⇥ N)⇥ N

e⌦

id⇥
⇣
��N

D
addh⇡0⇡0,⇡1i,addh⇡1⇡0,⇡1i

E⌘]

��N
D
addh⇡0⇡0,⇡1i,addh⇡1⇡0,⇡1i

E

The corresponding function representing a = b is simply (��N⇡0)
], discarding the c

parameter.
We then choose the functions for Axiom 9 that these functions satisfy. The func-

tion q : 1 ! ⌦
N⇥N should be (��N⇡0)

], since a + 0 = b + 0 is true precisely when
a = b. The function f : ⌦

N⇥N ! ⌦
N⇥N should be id⌦N⇥N , since adding one to each

side does not change the truth of the equation. We are thus seeking for the functions
to satisfy the following diagram:

1 N N

⌦
N⇥N

⌦
N⇥N

(��N⇡0)
]

z s

id⌦N⇥N

The successor case for (��N
⌦
addh⇡0⇡0,⇡1i, addh⇡1⇡0,⇡1i

↵
)
] follows from the fact

s is a monomorphism. The other cases are relatively trivial. We thus have that

(��N
⌦
addh⇡0⇡0,⇡1i, addh⇡1⇡0,⇡1i

↵
)
]
= (��N⇡0)

]

��N
⌦
addh⇡0⇡0,⇡1i, addh⇡1⇡0,⇡1i

↵
= ��N⇡0

��N
⌦
addh⇡0⇡0,⇡1i, addh⇡1⇡0,⇡1i

↵
hha, bi, ci = ��N⇡0hha, bi, ci for any a, b, c 2 N

��N
⌦
addha, ci, addhb, ci

↵
= ��Nha, bi for any a, b, c 2 N

16

Then, from the property of ��N discussed above, we have for any a, b, c 2 N:

addha, ci = addhb, ci () ��N
⌦
addha, ci, addhb, ci

↵
= t = ��Nha, bi

() a = b

3.3 Multiplication on Naturals To define multiplication, we use a similar approach
to that used to define addition, but we choose di�erent functions q : 1 ! NN and
f : NN ! NN, to define a u⇤ : N ! NN that represents a “multiply by n” function
n 7! (�m. m · n).

For q we need a function that represents multiplying by zero. Since the result of
any multiplication by zero is zero, we simply need to lift z into an element of NN.
That can be achieved by using the function (z � ⇡1)

], which satisfies the following
diagram by Axiom 10.

N⇥ NN N

N⇥ 1

eN

id⇥(z�⇡1)
]

z�⇡1

From the diagram, the application of (z �⇡1)
] using eN results in discarding the input

(using ⇡1) and outputting a constant z. Thus, (z � ⇡1)
] represents the function that

always outputs zero.
For f we need a function that transforms a “multiply by n” function (�m. n ·m)

into a “multiply by n + 1” function (�m. (n + 1) · m). This can be achieved by
first taking a copy of the input to the function (m) using ⇡0, while also applying the
function using eN to its ifnput to obtain n ·m. The add function can then be applied
to these two components to obtain n ·m+m = (n + 1) ·m. Combining these and
applying the transpose, we obtain (add � h⇡0, eNi)] : NN ! NN, which satisfies the
diagram below.

N⇥ NN N

N⇥ NN N⇥ N

eN

id⇥(add�h⇡0,eNi)]

h⇡0,eNi

add

We then plug q = (z � ⇡1)
] and f = (add � h⇡0, eNi)] into Axiom 9 to obtain the

unique u⇤ : N ! NN that satisfies the following diagram.

1 N N

NN NN

z

(z�⇡1)
]

s

u⇤ u⇤

(add�h⇡0,eNi)]

For each n 2 N, u⇤ � n then represents a “multiply by n” function. We then define a
two-argument multiplication function mult : N⇥N ! N by mult = eN � (id⇥ u⇤).

3.4 Properties of Multiplication All the usual properties of multiplication hold for our
mult function. We sketch the proof of each of them in turn.

17

Respects Zero to the Right: We have that multiplying by zero on the right yields zero.
This follows by a straightforward calculation, since we defined multiplication such
that this would hold.

m · 0 = mult(hm, zi)
= eN(id⇥ u⇤)hm, zi
= eNhm,u⇤zi
= eNhm, (z � ⇡1)

]i
= eN(id ⇥ (z � ⇡1)

]
)hm, idi

= z � ⇡1hm, idi
= 0

Respects Successor to the Right: We have that multiplication of m by the successor
of a number n is the same as multiplying m by n and then adding another m. Again,
this is a straightforward calculation as it is part of our definition of multiplication.

m · S(n) = mult (hm, sni)
= eN(id ⇥ u⇤)hm, sni
= eNhm,u⇤sni

= eNhm, (add � h⇡0, eNi)] u⇤ni

= eN(id ⇥ [add � h⇡0, eNi]])hm,u⇤ni
= addh⇡0, eNihm,u⇤ni
= add hm, eN(id ⇥ u⇤)hm,nii
= add hm,multhm,nii
= m+ (m · n)

S(0) is the Right Identity: The fact that one is the right identity of multiplication then
follows from the two facts above:

a · S(0) = a+ (a · 0) = a+ 0 = a

It is worth taking a moment to appreciate that this is our first interesting iden-
tity which does not ostensibly rely on facts from ETCS. Of course each step in the
computation has ETCS working “in the background”.
Respects Zero to the Left: Let n 2 N be arbitrary and consider the diagram

1 N N

N N

z

z

s

idN

It can be shown that multhidN, z�Ni and multhz�N, idNi both satisfy this diagram.
We thus have that 0 ·m = m · 0 = 0, since we have already established that multi-
plication respects zero on the right.

18

S(0) is the Left Identity: Consider the following diagram:

1 N N

N N

z

z

s

idN idN

s

It can be shown that mult � hsz�N, idNi also satisfies this diagram, so that it is equal
to idN.
Left Distributivity ((a+ b) · c = a · c+ b · c) Consider the following diagram:

1 N N

NN⇥N NN⇥N

z

(z⇡1)
]

s

(add�(add⇥idN)�h⇡0,eN⇥Ni)]

It can be shown that
• f = (mult � (add⇥ idN))]

• g = (addhmulth⇡0⇡0,⇡1i,multh⇡1⇡0,⇡1i)]

both satisfy this diagram.
Respects Successor to the Left:

m+ n ·m = S(0) ·m+ n ·m = (S(0) + n)m = (S(0 + n))m = S(n) ·m

Note, in particular, S(n) = S(n) · 1 = 1 + n · 1 = 1 + n.
Commutative: Consider the diagram from the definition of multiplication:

1 N N

NN NN

z

(z�⇡1)
]

s

(add�h⇡0,eNi)]

It can be shown that
�
mult � h⇡1,⇡0i

�] (where ⇡1,⇡0 : N ⇥ N ! N) also satisfies
this diagram.
Associative: Consider the following diagram (where ⇡0 : (N⇥N)⇥NN⇥N ! N⇥N):

1 N N

NN⇥N NN⇥N

z

(z��(N⇥N)⇥1)
]

s

⇣
add�hmult�⇡0,eNi

⌘]

It can be shown that
• f =

�
mult � (mult⇥ id)

�]

• g =
�
mult � (id⇥mult) � h⇡0⇡0, h⇡1⇡0,⇡1ii

�]

both satisfy this diagram.

3.5 Exponentiation on Naturals We construct exponentiation in terms of multiplica-
tion in a similar way to the definition of multiplication in terms of addition. We first
choose an appropriate function q : 1 ! NN to represent the function raising a natural

19

number to the power of zero. The result of raising a number to the power of zero is
always one, so we use q = (sz � ⇡1)

], defined by the following diagram.

N⇥ NN N

N⇥ 1

eN

id⇥(sz�⇡1)
]

sz�⇡1

Here, the input of zero is taken as the second argument to the exponentiation, while
the first argument is provided when eN is applied. This matches the ordering of the
arguments in the diagram.

Next, we choose f : NN ! NN describing what happens when we increase the
exponent by one. For this, we want to evaluate the exponentiation so far, then take a
copy of the first argument to the exponentiation and multiply it on. That is achieved
by taking f = (mult � h⇡0, eNi)], which satisfies the following diagram.

N⇥ NN fN

N⇥ NN N⇥ N

eN

id⇥(mult�h⇡0,eNi)]

h⇡0,eNi

mult

The construction is similar to the corresponding function in the definition of mult,
but we use mult in the definition here instead of add.

Putting these into Axiom 9, we obtain a unique functionu* : N ! NN that satisfies
the following diagram.

1 N N

NN NN

z

(sz�⇡1)
]

s

u* u*

(mult�h⇡0,eNi)]

We then define a function exp : N⇥ N ! N by exp = u[
* = eN � (idN ⇥ u*).

3.6 Properties of Exponentiation As with addition and multiplication, exponentiation
also fulfils all the properties we expect of it.f Exponentiation is our first noncommuta-
tive operator, so we have separate results giving properties for each of its arguments.
Respects Zero on the Left (n0 = 1): We have that raising any number to the power
of zero yields one. This follows by a straightforward calculation as it is part of our

20

definition of exponentiation.

n0
= exp � hn, zi
= eN � (idN ⇥ u*) � hn, zi
= eN � hn, u*zi
= eN � hn, (sz � ⇡1)

]i
= eN � (idN ⇥ (sz � ⇡1)

]
) � hn, idNi

= sz � ⇡1 � hn, idNi
= sz � idN
= sz

= 1

Note, in particular, that 00 = 1.
Respects One on the Left (n1 = n): We also have that raising n to the power of one
yields n. This is again a straightforward calculation, but a longer one, since fwe must
apply both of the equalities defining our exponentiation operator.

n1
= exp � hn, szi
= eN � (idN ⇥ u*) � hn, szi
= eN � hn, u*szi
= eN � hn, (mult � h⇡0, eNi)]u*zi
= eN � hn, (mult � h⇡0, eNi)](sz � ⇡1)

]i
= eN � (idN ⇥ (mult � h⇡0, eNi)]) � hn, (sz � ⇡1)

]i
= mult � h⇡0, eNi � hn, (sz � ⇡1)

]i
= mult � h⇡0 � hn, (sz � ⇡1)

]i, eN � hn, (sz � ⇡1)
]ii

= mult � hn, eN � hn, (sz � ⇡1)
]ii

= mult � hn, eN � (idN ⇥ (sz � ⇡1)
]
) � hn, idNii

= mult � hn, sz � ⇡1 � hn, idNii
= mult � hn, sz � idNi
= mult � hn, szi
= n · 1
= n

Respects Zero on the Right (0S(n) = 0): To show that raising zero to a nonzero power
also yields zero, we must apply induction using Axiom 9, since we have an arbitrary
value in the second argument. Consider the following commuting diagram:

1 N N

N N

z

z

s

z�N

It can be shown that z�N and exp � hz�N, si both satisfy this diagram.

21

Respects One on the Right (1n = 1): Similar to the previous proof, we must apply
induction to show that raising one to any power yields one. Consider the following
commuting diagram:

1 N N

N N

z

sz

s

idN

It can be shown that both sz�N and exp � hsz�N, idNi satisfy this diagram.
Respects Successor (a · ab = aS(b)

): We have that adding one to an exponent is the
same as multiplying. This follows by a straightforward proof, as for exponentiation
respecting zero, since it forms part of our definition of exponentiation.

mS(n)
= exphm, sni
= eN(id ⇥ u*)hm, sni
= eN(id ⇥ u*s)hm,ni
= eN

�
id ⇥ [multh⇡0, eNi]]u*

�
hm,ni

= eN
�
id ⇥ [multh⇡0, eNi]]

�
hm,u*ni

= multh⇡0, eNihm,u*ni
= multhm, eNhm,u*nii
= multhm, eN(id ⇥ u*)hm,nii
= multhm, exphm,nii
= m ·mn

Left Distributivity ((n ·m)k = nk ·mk
): We have that exponentiation of a product is a

product of exponentiations. We prove this by induction on the exponent, considering
the following diagram:

1 N N

NN⇥N NN⇥N

z

(sz⇡1)
]

s

(mult�hmult�⇡0,eN⇥Ni)]

It can be shown that this is satisfied by the both of the functions [exp � (mult⇥ id)]
]

and [mult � (exp⇥ exp) � hh⇡0⇡0,⇡1i, h⇡1⇡0,⇡1ii]]. The triangle in the diagram
follows easily from the properties of zero. The square then follows from the successor
case in our definition of exponentiation.
Right Distributivity (nm+k = nm · nk

): We also have that raising something to a sum
is the same as the product of two exponentiations. This is again proved by induction,
taking the second element of the sum (k) as the induction variable. Consider the
following diagram:

1 N N

NN⇥N NN⇥N

z

(exp�⇡0)
]

s

(mult�heN⇥N,⇡0⇡0i)]

22

Similarly to left distributivity, both [exp � (id⇥ add) � h⇡0⇡0, h⇡1⇡0,⇡1ii]] and
[mult � (exp⇥ exp) � hh⇡0⇡0,⇡1⇡0i, h⇡0⇡0,⇡1ii]] satisfy this diagram. The triangle
follows from a calculation using the properties of zero, as for left distributivity. For
the square, we use the fact that exponentiation respects successor, proved above.

3.7 Comparison We define a less than comparison operator by constructing a function
N⇥ N ! ⌦ that represents the following definition:

n m ⌘ 9k 2 N. n+ k = m

For this definition we require a function EXISTS : ⌦
N ! ⌦ that represents an

existential quantifier. It is most convenient to defineEXISTS in terms of the negation
function NOT : ⌦ ! ⌦ and a universal quantifier FORALL : ⌦

N ! ⌦, using the
fact that 9x. P (x) ⌘ ¬8x. ¬P (x).

We obtain a NOT : ⌦ ! ⌦ function by taking the characteristic function of
f : 1 ! ⌦, such that the following diagram is a pullback by Axiom 8:

1 1

⌦ ⌦

f

�1

t

NOT

It follows from this that NOT(f) = t. We also have that NOT(t) = f, since if it were
equal to t then from the pullback property we have t = f which is a contradiction.
Therefore, NOT(t) is not t and hence equal to f.

To define the function FORALL : ⌦
N ! ⌦, we observe that if a function N ! ⌦

is true for all inputs, then it is equal to a constant true function. If a function is equal
to a constant true function, then there is a function corresponding to it that is in the
singleton subset of ⌦N containing the member of ⌦N representing a constant true
function. We can thus obtain FORALL by taking the characteristic function of that
subset.

The constant true function in ⌦
N is represented by the function (t⇡1)

]
: 1 ! ⌦

N.
Since this is a function from 1, it is a monomorphism and hence defines a subset. Ax-
iom 8 then gives us a characteristic function for it, which we define to be FORALL,
and, for any predicate p : N ! ⌦, we have the following pullback:

1

1 1

⌦
N

⌦

(p⇡0)
]

id1

(t⇡1)
]

�1

t

FORALL

23

Note that, for any predicate p : N ! ⌦, we have that:

FORALL � (p⇡0)
]
= t

() (p⇡0)
]
= (t⇡1)

]

() e⌦ � (id⇥ (p⇡0)
]
) = e⌦ � (id⇥ (t⇡1)

]
)

() p⇡0 = t⇡1

() p⇡0 = t�N⇡0

() p = t�N

() 8n 2 N. p(n) = t�N(n)

() 8n 2 N. p(n) = t

We then define EXISTS = NOT�FORALL�NOT
N
: ⌦

N ! ⌦. We then have,
for any predicate p : N ! ⌦:

EXISTS � (p⇡0)
]
= t

() NOT � FORALL �NOT
N � (p⇡0)

]
= t

() NOT � FORALL � (NOT � p⇡0)
]
= t

() FORALL � (NOT � p⇡0)
]
= f

() ¬8n 2 N. NOT � p(n) = t

() 9n 2 N. NOT � p(n) = f

() 9n 2 N. p(n) = t

We have a general fact, suppose ⇡0 : X⇥1 ! X and y 2 Y and f : X⇥Y ! Z
(and f]

: Y ! ZX) then

f] � y = (f � hidX , y�Xi � ⇡0)
]

To establish this, let x 2 X be arbitrary then

f � hidX , y�Xi � ⇡0hx, id1i
= f � hidX , y�Xix = fhx, y�Xxi = fhx, yi

= f � (idX ⇥ y) � hx, id1i = (f] � y)[� hx, id1i

Since hx, id1i was arbitrary it follows that f � hidX , y�Xi �⇡0 = (f] �y)[; by taking
sharps we arrive at the desired result.

With EXISTS in place, we can define N: N⇥ N ! ⌦ by

N= EXISTS � (��Nhaddh⇡0,⇡0⇡1i,⇡1⇡1i)]

24

Commonly we will simply write n N m in place of N hn,mi when the context is
clear.

N hn,mi = t

() EXISTS � (��Nhaddh⇡0,⇡0⇡1i,⇡1⇡1i)] � hn,mi = t

() EXISTS � (��Nhaddh⇡0,⇡0⇡1i,⇡1⇡1i � hidN, hn,mi�Ni � ⇡0)
]
= t

() 9k 2 N. ��Nhaddh⇡0,⇡0⇡1i,⇡1⇡1i � hidN, hn,mi�Ni � k = t

() 9k 2 N. ��Nhaddh⇡0,⇡0⇡1i,⇡1⇡1i � hk, hn,mii = t

() 9k 2 N. ��Nhaddhk, ni,mi = t

() 9k 2 N. addhk, ni = m

N is a Total order: We now prove that N satisfies the following properties:
1. Antisymmetry: If N hn,mi = t and N hm,ni = t then n = m.
2. Transitivity: If N hn,mi = t and N hm, pi = t then N hn, pi = t.
3. Connexity: N hn,mi = t or N hm,ni = t.

For the first, suppose that N hn,mi = t and N hm,ni = t then there exists
k 2 N such that k+n = m and there exists j 2 N such that j+m = n. It follows that
0+m = m = k+n = k+ j+m, so that by the cancellation law we have 0 = k+ j.
Now if k 6= 0 then k = S(a) for some a 2 N1, but then 0 = S(a)+j = S(a+j) and
zero is not the successor of any natural number (Hatcher [4] proves this along with
the other Peano postulates in ETCS). Therefore, k = 0 and n = m.

For the second, suppose that N hn,mi = t and N hm, pi = t then there exists
k 2 N such that k + n = m and there exists j 2 N such that j +m = p. It follows
that (j + k) + n = j + (k + n) = j +m = p so that N hn, pi = t.

For the third, we want to first convert our logical “or” into an ETCS “OR”. Hatcher
defines OR as �hid⌦,t�⌦iqht�⌦,id⌦i : ⌦ ⇥ ⌦ ! ⌦. We now show that this function
does in fact behave as you would suspect.

�hid⌦,t�⌦iqht�⌦,id⌦i � ht, ?i
= �hid⌦,t�⌦iqht�⌦,id⌦i � ht�⌦, id⌦i � ?
= �hid⌦,t�⌦iqht�⌦,id⌦i � (hid⌦, t�⌦i q ht�⌦, id⌦i) � i1 � ?
= t � �⌦

`
⌦ � i1 � ?

= t � id1
= t

= t � �⌦
`

⌦ � i0 � ?
= �hid⌦,t�⌦iqht�⌦,id⌦i � (hid⌦, t�⌦i q ht�⌦, id⌦i) � i0 � ?
= �hid⌦,t�⌦iqht�⌦,id⌦i � hid⌦, t�⌦i � ?
= �hid⌦,t�⌦iqht�⌦,id⌦i � h?, ti

where ? : 1 ! ⌦. The above computation shows that as long as at least one value in
the argument is true then the full expression is true.

Now suppose that both of the arguments are false. We prove by contradiction that
�hid⌦,t�⌦iqht�⌦,id⌦i � hf, fi = f. Suppose that �hid⌦,t�⌦iqht�⌦,id⌦i � hf, fi = t, then,
from Axiom 8, we have h : 1 ! ⌦

`
⌦ that satisfies the following commuting

25

diagram:
1

⌦
`

⌦ 1

⌦⇥ ⌦ ⌦

hf,fi

h id1

hid⌦,t�⌦iqht�⌦,id⌦i t

�hid⌦,t�⌦iqht�⌦,id⌦i

The only possible values for h are i0t, i0f, i1t, i1f, but from Axiom 5 we have:

(hid⌦, t�⌦i q ht�⌦, id⌦i) � i0t = hid⌦, t�⌦i � t = ht, ti
(hid⌦, t�⌦i q ht�⌦, id⌦i) � i0f = hid⌦, t�⌦i � f = hf, ti
(hid⌦, t�⌦i q ht�⌦, id⌦i) � i1t = ht�⌦, id⌦i � t = ht, ti
(hid⌦, t�⌦i q ht�⌦, id⌦i) � i1f = ht�⌦, id⌦i � t = ht, fi

Since none of these are equal to hf, fi, this contradicts the diagram, so we have the
desired result.

Connexity can then be defined in ETCS terms as:

�hid⌦,t�⌦iqht�⌦,id⌦i �
⌦
N hn,mi,N hm,ni

↵
= t

To show this, we show that
�
�hid⌦,t�⌦iqht�⌦,id⌦i � hN h⇡0,⇡1i ,N � h⇡1,⇡0ii

�]

satisfies the diagram below, as well as (t�N⇥N)], so that the two are equal.

1 N N

⌦
N

⌦
N

z

(t⇡1)
]

s

id⌦N

To this end, let n 2 N be arbitrary then

e(id ⇥ (t�N⇥N)
] � z)hn, idi = e(id ⇥ (t�N⇥N)

]
) � (id ⇥ z)hn, idi

= e(id ⇥ (t�N⇥N)
]
)hn, zi

= t�N⇥Nhn, zi
= t

We get the same result if we use the other function

e
⇣
id ⇥

�
�hid⌦,t�⌦iqht�⌦,id⌦i � hN,N � h⇡1,⇡0ii

�] � z
⌘
hn, idi

= �hid⌦,t�⌦iqht�⌦,id⌦i �
⌦
N hz, ni,N hn, zi

↵

= �hid⌦,t�⌦iqht�⌦,id⌦i � ht, ?i
= t

where ? : 1 ! ⌦.
Finally, note that e(id⇥(t⇡1)

]
)hn, idi = t⇡1hn, idi = t; therefore, both functions

make the triangle commute.

26

Now we prove that both make the square commute.

e(id ⇥ (t�N⇥N)
] � s)hm,ni

= t�N⇥Nhm, sni
= t

= t�N⇥Nhm,ni
= e(id ⇥ (t�N⇥N)

]
)hm,ni

To show that
�
�hid⌦,t�⌦iqht�⌦,id⌦i � hN,N h⇡1,⇡0ii

�] makes the square com-
mute, it su�ces to only consider the case when N hn,mi = f and N hm,ni = f,
since if at least one of these is true then we have our main result but this would
also prove the square commutes. To this end, we show that N hsm, ni = f and
N hn, smi = f. Therefore, we assume, for a contradiction, that N hsm, ni = t or
N hn, smi = t. In the former case there exists k 2 N such that sm + k = n but
then n = sm + k = m + sk so that N hm,ni = t, a contradiction. In the latter
case, if N hn, smi = t then there exists j 2 N such that n + j = sm = m + 1. If
j = 0 then n = m + 1 so that N hm,ni = t, a contradiction. Otherwise, j = sp
for some p 2 N then sm = n+ j = n+ sp = s(n+ p) but the successor is injective
so that m = n+ p but then N hn,mi = t, a contradiction. Either way we arrive at
a contradiction so it must be the case that N hn, smi = f.

In assuming that N hn,mi = f and N hm,ni = f we concluded that
N hsm, ni = f and N hn, smi = f, now we show that the square is made to
commute in such cases.

e(id ⇥ [�hid⌦,t�⌦iqht�⌦,id⌦i �
⌦
N,N h⇡1,⇡0i

↵
]
] � s)hn,mi

= �hid⌦,t�⌦iqht�⌦,id⌦i �
⌦
N,N h⇡1,⇡0i

↵
hn, smi

= �hid⌦,t�⌦iqht�⌦,id⌦i �
⌦
N hn, smi,N hsm, ni

↵

= �hid⌦,t�⌦iqht�⌦,id⌦i � hf, fi
= �hid⌦,t�⌦iqht�⌦,id⌦i �

⌦
N hn,mi,N hm,ni

↵

= e(id ⇥ [id⌦N � �hid⌦,t�⌦iqht�⌦,id⌦i �
⌦
N,N h⇡1,⇡0i

↵
]
]
)hn,mi

We then have that
�hid⌦,t�⌦iqht�⌦,id⌦i � hN h⇡0,⇡1i ,N � h⇡1,⇡0ii = t�N⇥N

and connexity clearly follows.

4 Integers in ETCS

We define integers in terms of equivalence classes of pairs. One may think of the
first element of a pair as representing a negative component, and the second element
as representing a positive component, so that ha, bi represents “b � a”. We thus say
that two pairs ha, bi and hc, di represent the same integer if b + c = a + d. We
use Axiom 6 to define an equivalence relation (a subset of (N ⇥ N) ⇥ (N ⇥ N))
with this property. We have add � h⇡1⇡0,⇡0⇡1i � hha, bi, hc, dii = b + c and
add�h⇡0⇡0,⇡1⇡1i�hha, bi, hc, dii = a+d. Therefore, we let f = add�h⇡1⇡0,⇡0⇡1i
and g = add � h⇡0⇡0,⇡1⇡1i for Axiom 6, this yields a set RZ and monomorphism
mRZ representing the equivalence relation we desire. We also have that, for any other
function h : F ! (N ⇥ N) ⇥ (N ⇥ N) that equalizes f and g, there is a function

27

k : F ! RZ such that mRZ � k = h. Now we show our equivalence relation indeed
has the desired property, ha, bi ⇠ hc, di just in case b+ c = a+ d.

hha, bi, hc, dii 2 RZ

() hha, bi, hc, dii factors through mRZ

() add � h⇡1⇡0,⇡0⇡1i(hha, bi, hc, dii) = add � h⇡0⇡0,⇡1⇡1i(hha, bi, hc, dii)
() b+ c = a+ d

Taking RZ as our equivalence relation, we use Axiom 7 to construct Z as the
quotient (N⇥N)/RZ and obtain a function qZ : N⇥N ! Z such that ha, bi ⇠ hc, di
if and only if qha, bi = qhc, di. We also have that for any f : N ⇥ N ! Y that is
constant on equivalence classes, there is a unique function f̄ : Z ! Y such that the
following function commutes:

N⇥ N Y

Z

f

qZ
f

If n 2 N then its canonical integer representation is qZhz, ni; note, in particular,
that z 2 N lifts to qZhz, zi. Moreover, an integer of the form qZhn, zi can be thought
of as a negative integer.
Representation: For every nonzero integer m there exists nonzero n 2 N such that
m = qZhz, ni or m = qZhn, zi. Such a representation is said to be canonical. That
is to say, every integer is either positive, negative, or zero.

If m 2 Z then there exists a, b 2 N (not both z, since m is assumed to be
nonzero) such that m = qZha, bi, since qZ is an epimorphism and hence surjective.
If N ha, bi = t then there exists k 2 N such that k +N a = b, and we may write
k = b � a. Now since (b � a) + a = z + b it follows that hz, b � ai ⇠ ha, bi and
qZhz, b�ai = qZha, bi = m. Otherwise, N hb, ai = t by connexity and there exists
j 2 N such that j+b = a, so that b+(a�b) = a+z and qZha�b, zi = qZha, bi = m.

4.1 Negation To define negation, we simply swap the left and right components of
the pair representing an integer. The function h⇡1,⇡0i : N⇥ N ! N⇥ N swaps the
elements of a pair, then the corresponding Z ! Z function is qZh⇡1,⇡0i, which we
abbreviate as neg, representing negation, and which satisfies the following diagram:

N⇥ N N⇥ N

Z Z

h⇡1,⇡0i

qZ qZ

neg

Note that we have qZh⇡1,⇡0i is constant on equivalence classes (that is, for
any hx, yi 2 RZ, qZh⇡1,⇡0i(x) = qZh⇡1,⇡0i(y)). To see this, assume that
hha, bi, hc, dii 2 RZ then note that ha, bi ⇠ hb, ai and hc, di ⇠ hd, ci therefore
hb, ai ⇠ hd, ci hence

qZh⇡1,⇡0iha, bi = qZhb, ai = qZhd, ci = qZh⇡1,⇡0ihc, di
Where the middle equality follows from the definition of qZ in Axiom 7. The appli-
cation of Axiom 7 above to define negation is thus justified.

28

4.2 Binary function lifting Given f : X ⇥ (N ⇥ N) ! Z (for any X) that is
constant on equivalence classes (that is, if hc, di ⇠ hc0, d0i and x 2 X then
fhx, hc, dii = fhx, hc0, d0ii), define liftrZ(f) : X ⇥ Z ! Z by

liftrZ(f) = (f])
[

We have that f] is constant on equivalence classes since if hc, di ⇠ hc0, d0i then

eZ � (id⇥ f]
)hx, hc, dii = fhx, hc, dii

= fhx, hc0, d0ii
= eZ � (id⇥ f]

)hx, hc0, d0ii

Then we have that

eZ � (id⇥ (f]hc, di))hx, id1i = eZ � (id⇥ (f]hc0, d0i))hx, id1i

Since every element of X ⇥ 1 is of the form hx, id1i and x is arbitrary then from
Axiom 2 we have that

eZ � (id⇥ (f]hc, di)) = eZ � (id⇥ (f]hc0, d0i))

Then, from Axiom 10, we have that there is a unique function that satisfies this so

f]hc, di = f]hc0, d0i

So f] is constant on equivalence classes.
We want to show that liftrZ(f) is the unique function g such that g�(id⇥qZ) = f .
First, we have that

liftrZ(f) � (id⇥ qZ) = (f])
[� (id⇥ qZ)

= eZ � (id⇥ f]) � (id⇥ qZ)

= eZ � (id⇥ (f] � qZ))
= eZ � (id⇥ f]

)

= f

Suppose there is another function g : X⇥Z ! Z such that g�(id⇥qZ) = f . Then
we have that g � (id⇥ qZ) = liftrZ(f) � (id⇥ qZ). Since id⇥ qZ is an epimorphism
(because id and qZ are epimorphisms and the product of two epimorphisms is an
epimorphism), then we have that g = liftrZ(f), so liftrZ(f) is unique.

Similarly, given f : (N⇥N)⇥Y ! Z (for any Y) that is constant on equivalence
classes (that is, if ha, bi ⇠ ha0, b0i and y 2 Y then fhha, bi, yi = fhha0, b0i, yi),
define liftlZ(f) : Z⇥ Y ! Z by

liftlZ(f) = ((fh⇡1,⇡0i)])[h⇡1,⇡0i

By letting F = fh⇡1,⇡0i we have that F] is constant on equivalence classes by the
same proof as we showed above for f]. We want to show that liftlZ(f) is the unique
function such that g � (qZ ⇥ id) = f .

29

First, we have that

liftlZ(f) � (qZ ⇥ id) = ((fh⇡1,⇡0i)])[h⇡1,⇡0i � (qZ ⇥ id)

= ((fh⇡1,⇡0i)])[h⇡1,⇡0i � hqZ⇡0, id⇡1i

= ((fh⇡1,⇡0i)])[hid⇡1, qZ⇡0i

= eZ � (id⇥ (fh⇡1,⇡0i)])hid⇡1, qZ⇡0i

= eZ � (id⇥ (fh⇡1,⇡0i)]qZ)h⇡1,⇡0i
= eZ � (id⇥ (fh⇡1,⇡0i)])h⇡1,⇡0i
= fh⇡1,⇡0ih⇡1,⇡0i
= fh⇡0,⇡1i
= f

Suppose there is another function g : Z ⇥ X ! Z such that g � (qZ ⇥ id) = f .
Then g � (qZ ⇥ id) = liftlZ(f) � (qZ ⇥ id) and, since qZ ⇥ id is an epimorphism,
g = liftlZ(f) so liftlZ(f) is unique.

Finally, given a function f : (N ⇥ N) ⇥ (N ⇥ N) ! Z that is constant
on equivalence classes (that is, if ha, bi ⇠ ha0, b0i and hc, di ⇠ hc0, d0i then
fhha, bi, hc, dii = fhha0, b0i, hc0, d0ii), then we define lift2Z(f) : Z ⇥ Z ! Z
by

lift2Z(f) = liftrZ(liftlZ(f))

We want to show that that liftlZ(f) is constant on equivalence classes in the liftrZ
sense and that this is the unique function such that lift2Z(f) � (qZ ⇥ qZ) = f .

Suppose that hc, di ⇠ hc0, d0i and z 2 Z are arbitrary, then

liftlZ(f)hz, hc, dii = ((fh⇡1,⇡0i)])[h⇡1,⇡0ihz, hc, dii

= ((fh⇡1,⇡0i)])[hhc, di, zi

= eZ � (id⇥ (fh⇡1,⇡0i)])hhc, di, zi

= eZ � (id⇥ (fh⇡1,⇡0i)])hhc, di, qZxi for some x 2 N⇥ N

= eZ � (id⇥ (fh⇡1,⇡0i)]qZ)hhc, di, xi for some x 2 N⇥ N
= eZ � (id⇥ (fh⇡1,⇡0i)])hhc, di, xi for some x 2 N⇥ N
= fh⇡1,⇡0ihhc, di, xi for some x 2 N⇥ N
= fhx, hc, dii for some x 2 N⇥ N
= fhx, hc0, d0ii for some x 2 N⇥ N
· · ·
= liftlZ(f)hz, hc0, d0ii

Observe that

lift2Z(f) � (qZ ⇥ qZ) = liftrZ(liftlZ(f)) � ((id⇥ qZ)) � (qZ ⇥ id)

= liftrZ(f) � (qZ ⇥ id) = f

30

Suppose there is another function g : Z ⇥ Z ! Z such that g � (qZ ⇥ qZ) = f .
Then g � (qZ ⇥ qZ) = lift2Z(f) � (qZ ⇥ qZ) and, since qZ ⇥ qZ is an epimorphism,
g = lift2Z(f), so lift2Z(f) is unique.

These lifting operators give us a general way to convert functions on pairs of pairs
of natural numbers to functions on pairs of integers. Next, we use them to construct
binary operations over the integers in terms of functions over the natural numbers.

4.3 Addition For addition on integers we want to define a function Z ⇥ Z ! Z,
similarly to natural numbers. We start with a function (N⇥N)⇥ (N⇥N) ! N⇥N,
and use lift2Z and qZ to lift it to Z.

addN⇥N = (add⇥ add) � hh⇡0⇡0,⇡0⇡1i, h⇡1⇡0,⇡1⇡1ii

We lift the output of this by applying qZ to it. Then, in order to apply lift2Z, we
need to show that qZ � addN⇥N is constant on equivalence classes. Suppose that
ha, bi ⇠ ha0, b0i and hc, di ⇠ hc0, d0i then, a+ b0 = b+ a0 and c+ d0 = d+ c0 then

a+ b0 + c+ d0 = b+ a0 + d+ c0

equivalently
(a+ c) + (b0 + d0) = (a0 + c0) + (b+ d)

then
ha+ c, b+ di ⇠ ha0 + c0, b0 + d0i

hence qZha + c, b + di = qZha0 + c0, b0 + d0i, since qZ is constant on equivalence
classes. We thus have that qZ � addN⇥N is constant on equivalence classes, so we can
define addZ : Z⇥ Z ! Z by

addZ = lift2Z(qZ � addN⇥N)

By the lifting property (see the previous section) this satisfies the following commut-
ing diagram:

(N⇥ N)⇥ (N⇥ N) N⇥ N

Z⇥ Z Z

addN⇥N

qZ⇥qZ qZ

addZ

4.4 Properties of Addition In this section, we show a general strategy for proving the
results from natural numbers in the integer setting. To this end, we directly show a
few results. First note that

addN⇥N
⌦
ha, bi, hc, di

↵

= (add⇥ add) � hh⇡0⇡0,⇡0⇡1i, h⇡1⇡0,⇡1⇡1ii
⌦
ha, bi, hc, di

↵

=
⌦
addha, ci, addhb, di

↵

Respects Identity

0 +Z x = addZhqZhz, zi, qZha, bii = addZ(qZ ⇥ qZ)hhz, zi, ha, bii

= qZaddN⇥Nhhz, zi, ha, bii = qZhaddhz, ai, addhz, bii = qZha, bi = x

31

Commutative Suppose that n,m 2 Z then n = qZha, bi and m = qZhc, di for some
a, b, c, d 2 N

n+Z m = addZ
⌦
qZha, bi, qZhc, di

↵

= qZ
⌦
addha, ci, addhb, di

↵

= qZ
⌦
addhc, ai, addhd, bi

↵
(‡)

= addZ
⌦
qZhc, di, qZha, bi

↵

= m+Z n

We note that (‡) follows from commutativity within N; in general, we can prove
results about Z by reducing it to the analogous result for N.
Additive Inverse (n+ (�n) = 0):

n+Z (�n) = addZ
⌦
qZha, bi, neg � qZha, bi

↵

= addZ
⌦
qZha, bi, qZh⇡1,⇡0iha, bi

↵

= addZ(qZ ⇥ qZ)
⌦
ha, bi, hb, ai

↵

= qZ � addN⇥N
⌦
ha, bi, hb, ai

↵

= qZ
⌦
addha, bi, addhb, ai

↵

= qZha+N b, a+N bi
= qZhz, zi
= 0

where we used the fact that (a +N b) +N 0 = (a +N b) +N 0 if and only if
ha+N b, a+N bi ⇠ hz, zi if and only if qZha+N b, a+N bi = qZhz, zi.

One can easily show that 0Z = �0Z and �(�n) = n for every n 2 Z.

4.5 Multiplication As with addition, we first define multiplication on pairs of naturals.
Since we want to have (b� a) · (d� c) = (ac+ bd)� (ad+ bc) we define

multN⇥N =
D
add

⌦
multh⇡0⇡0,⇡1⇡1i,multh⇡1⇡0,⇡0⇡1i

↵
,

add
⌦
multh⇡0⇡0,⇡0⇡1i,multh⇡1⇡0,⇡1⇡1i

↵E

And acting on an arbitrary element we see that
multN⇥N

⌦
ha, bi, hc, di

↵
=

D
add

⌦
hmultha, di, hmulthb, ci

↵
, add

⌦
hmultha, ci, hmulthb, di

↵E

We want to prove that qZ �multN⇥N is constant on equivalence classes and then
define

multZ = lift2Z(qZ �multN⇥N)

As before, multiplication satisfies the following diagram via the lifting property

(N⇥ N)⇥ (N⇥ N) N⇥ N

Z⇥ Z Z

multN⇥N

qZ⇥qZ qZ

multZ

32

Now we show that qZ �multN⇥N is indeed constant on equivalence classes. Sup-
pose ha, bi ⇠ ha0, b0i and hc, di ⇠ hc0, d0i then we have b + a0 = a + b0 and
d+ c0 = c+ d0 from which it follows

ac+ (a0 + b)d0 = ac+ (a0 + b)d0

=) ac+ (a0 + b)d0 = ac+ (a+ b0)d0

=) ac+ (a0 + b)d0 = ac+ ad0 + b0d0

=) ac+ (a0 + b)d0 = a(c+ d0) + b0d0

=) ac+ (a0 + b)d0 = a(d+ c0) + b0d0

=) ac+ bd0 + a0d0 = ad+ ac0 + b0d0

=) ac+ bc+ bd0 + a0d0 + b0c0 = ad+ bc+ ac0 + b0c0 + b0d0

=) ac+ b(c+ d0) + a0d0 + b0c0 = ad+ bc+ (a+ b0)c0 + b0d0

=) ac+ b(d+ c0) + a0d0 + b0c0 = ad+ bc+ (a0 + b)c0 + b0d0

=) ac+ bd+ bc0 + a0d0 + b0c0 = ad+ bc+ a0c0 + bc0 + b0d0

=) (ac+ bd) + (a0d0 + b0c0) = (a0c0 + b0d0) + (ad+ bc)

It follows that
⌦
ad+ bc, ac+ bd

↵
⇠

⌦
a0d0 + b0c0, a0c0 + b0d0

↵

equivalently

qZ
⌦
ad+ bc, ac+ bd

↵
= qZ

⌦
a0d0 + b0c0, a0c0 + b0d0

↵

this shows that qZ �multN⇥N is constant on equivalence classes.

4.6 Properties of Multiplication As expected, multiplication on Z satisfies the usual
laws. Often times, the result in question simply reduces to corresponding results
in N and the working is straightforward. We thus omit full proofs for most of the
results in this section. As an example we explicitly demonstrate the proof that ·Z is
an associative operation.
Respects Identity We have that the integer representation of 1, qZhz, szi, is the identity
of (integer) multiplication by a straightforward calculation, using the identity and
zero properties of natural number addition and multiplication. Since we have that
multiplication is constant on equivalence classes, it is su�cient to prove this for the
canonical representation qZhz, szi.
Respects Zero The integer representation of 0 is qZhz, zi and, as expected, 0 does
annihilate anything it is multiplied against. This follows, similarly to the identity law
above, from the zero law of natural number multiplication and the identity law of
natural number addition.
Commutative We obtain commutativity of integer multiplication by observing that
natural number addition and multiplication are commutative. Swapping the numbers
in the natural number addition and multiplication then results in a corresponding swap
in the integer representations. Since we have commutativity, it is, of course, su�cient
to prove the other laws in this section only in a single direction.

33

Associative Here we explicitly demonstrate that multiplication is associate. Suppose
that x = qZha, bi, y = qZhc, di, and t = qZhe, fi then

(x ·Z y) ·Z t

= multZ
D
multZ

⌦
qZha, bi, qZhc, di

↵
, qZhe, fi

E

= multZ
D
multZ(qZ ⇥ qZ)

⌦
ha, bi, hc, di

↵
, qZhe, fi

E

= multZ
D
qZ �multN⇥N

⌦
ha, bi, hc, di

↵
, qZhe, fi

E

= multZ
D
qZ �

⌦
a ·N d+N b ·N c, a ·N c+N b ·N d

↵
, qZhe, fi

E

= qZ �multN⇥N
D
ha · d+ b · c, a · c+ b · di, he, fi

E

= qZ
D
(ad+ bc)f + (ac+ bd)e, (ad+ bc)e+ (ac+ bd)f

E

= qZ
D
(ad)f + (bc)f + (ac)e+ (bd)e, (ad)e+ (bc)e+ (ac)f + (bd)f

E

= qZ �
D
a(ce+ df) + b(cf + de), a(cf + de) + b(ce+ df)

E

= qZ �multN⇥N
D
ha, bi, hcf + de, ce+ dfi

E

= multZ
D
qZha, bi, qZhcf + de, ce+ dfi

E

= multZ
D
qZha, bi,multZhqZhc, di, qZhe, fii

E

= x ·Z (y ·Z t)

Distributive We have that multiplication on the integers distributes over addition. This
follows easily from the corresponding distributivity law on the natural numbers once
the definitions of multiplication and addition on integers have been unfolded.

4.7 Cancellation Laws For every integer we have

a+ c = b+ c =) a = b

and provided c 6= 0

a · c = b · c =) a = b

To prove the first, a = a+ c� c = b+ c� c = b.
Now we prove the second cancellation law. Suppose that a ·Z c = b ·Z c (with

c 6= 0). First let us assume that a, b, c > 0 then a = qZhz, ui, b = qZhz, vi, and
c = qZhz, wi for some u, v, w 2 N.

34

qZ
⌦
0, u ·N w

↵
= qZ

⌦
0 ·N w +N u ·N 0, 0 ·N 0 +N u ·N w

↵

= qZ � multN⇥N
⌦
hz, ui, hz, wi

↵

= multZ � (qZ ⇥ qZ)
⌦
hz, ui, hz, wi

↵

= a ·Z c

= b ·Z c

= · · ·
= qZ

⌦
0 ·N w +N v ·N 0, 0 ·N 0 +N v ·N w

↵

= qZ
⌦
0, v ·N w

↵

from which we have
⌦
0, u ·N w

↵
⇠

⌦
0, v ·N w

↵
and hence

u ·N w = u ·N w +N 0 = 0 +N v ·N w = v ·N w.

We conclude that u = v from the corresponding cancellation law in N, and it then
follows that a = b. Similar proofs exist in case either a (and hence b) or c are negative.

5 Discussion and Conclusion

The above results show that one can successfully ground the theory of arithmetic
within ETCS. That is, ETCS’s N together with the operations defined above serve as
a model for the theory of arithmetic.

We note that Hatcher [4] defines both cardinals and ordinals within the framework
of ETCS, with ordinals corresponding to the elements of N. While Hatcher did de-
velop a full theory of arithmetic for cardinals, he did not construct a parallel theory
for ordinals, although he did prove the Peano postulates for the ordinals. Our work
thus focuses on defining arithmetic for the ordinals in ETCS. In many ways these
ordinal numbers correspond better to numbers as mathematical objects, since they
allow us to construct higher kinds of number, as in our construction of the integers.
By contrast, cardinal numbers in ETCS are represented by the set objects themselves,
and so focus particularly on the size of the set as their main defining property. The
former are defined as certain objects within Sets while the latter are elements of the
natural number object N. Hatcher develops a theory of cardinal arithmetic by defin-
ing 0 as the initial object ;, 1 as the terminal object 1, addition as the coproduct,
multiplication as the cartesian product, and exponentiation as given by Axiom 10.
Under that system, two is defined as 1 + 1 and 3 is either 2 + 1 or 1 + 2. In order for
“1 + 2 = 2 + 1” to be true, we must require that sets are equal up to isomorphism,
thus justifying the label of “cardinal arithmetic”. That is to say, we cannot prove in
this framework that 1+2 = 2+1, rather we must agree that sets of the same size are
equal. There is, of course, an ongoing philosophical debate among category theorists
and metaphysicians as to whether sets are equal up to isomorphism [7].

The distinction between cardinals and ordinals in ETCS and ZFC can be partic-
ularly illustrated by considering the question of whether 2 is an element of 3. For
the von Neumann construction of cardinals and ordinals [10] in ZFC this can be un-
ambiguously a�rmed; moreover, the von Neumann construction cannot discriminate
between finite ordinals and cardinals. However, ETCS views ordinals and cardinals
as di�erent types – the former are functions while the latter are sets. Thus, the ques-
tion, “Is 2 2 3?” is only made meaningful if 2 is the ordinal ssz while 3 must be

35

a set isomorphic to 1
`

(1
`

1). In fact, the following diagram demonstrates that
2 2N 1 + (1 + 1), yet we cannot simply say 2 2 1 + (1 + 1) since the types do not
match up.

N 1
`

(1
`

1)

1

zq(szqssz)

ssz
i1i1

Moreover, it is easy to see that isomorphic sets have the same relative elements. No-
tice that we can think of z q (sz q ssz) as characterising the subset {0, 1, 2} of N in
ETCS. This shows how functions are taken to characterize subsets in ETCS, and we
observe that ssz would not be a relative element of the subset characterised by a dif-
ferent monomorphism such as sssz q (ssssz q sssssz), which would characterise
the subset {3, 4, 5}. Thus, while sets of the same size are isomorphic in both ETCS
and ZFC, this isomorphism is more specific in ETCS since it does not necessarily
associate specific subsets of N with one another. Rather, subsets of N are di�erent
characterisations of the same set 1

`
(1

`
1), and the isomorphism between sets of

the same size yields a way to construct analogous subsets over other sets, such as
(1

`
1)

`
1 or 1

`
⌦. However, this does not relate the subsets themselves, since

an isomorphism f from 1
`
(1

`
1) to (1

`
1)

`
1 provides a way to make a subset

of (1
`

1)
`

1 corresponding to z q (sz q ssz), as shown in the diagram below,
but cannot transform it to correspond to sssz q (ssssz q sssssz). To meaningfully
change the contents of the subset instead requires an isomorphism from N to N swap-
ping 0, 1 and 2 with 3, 4 and 5, which would also change the relative element in the
same way.

(1
`

1)
`

1

N 1
`

(1
`

1)

1

zq(szqssz)�f�1

zq(szqssz)

f

ssz
i1i1

By contrast, in ZFC we have that {0, 1, 2} and {3, 4, 5} are isomorphic but distinct
sets, rather than di�erent views of a particular set, and isomorphism in ZFC does
not preserve elements in the way ETCS allows, since ZFC does not distinguish the
properties that are captured in ETCS by the combination of a set and monomorphism.
This suggests that there is some deeper property of sets that is being captured by the
notion of a set in ETCS when it is not associated with a monomorphism denoting it as
a particular subset. We thus see that ETCS not only has a distinction between finite.
ordinal and cardinal numbers that is not present in ZFC, but also makes stronger
distinctions concerning the elements of sets and relations between them.

Another point to note in our construction of the natural number is that, while we
can construct infinitely large sets (representing transfinite cardinals) by considering
N and exponentials of it, our set N of natural numbers contains only the finite ordi-
nals. It is an open question whether we can construct transfinite ordinals or if ETCS
represents some form of finitism in its approach to constructing ordinal numbers. A
form of infinite ordinal could perhaps be constructed over a set larger than N, such as
⌦

N, up to some limit. By the Burali-Forti paradox [1] we cannot find the transfinite

36

ordinals in any one set, so we would need to develop a general method for developing
sets containing increasing larger ordinals. However, it remains unclear what the def-
inition of such ordinals would be, or how arithmetic may be defined over them. We
thus leave consideration of such a topic to future work.

In the course of our research, we discovered that ETCS comes equipped with its
own first-order logic with quantifier. Hatcher previously demonstrated that ETCS
has the usual connectives of first-order logic, in particular conjunction, disjunction,
and negation. For our purposes we found it necessary to construct universal and
existential quantifiers over this logic in addition to the connectives defined by Hatcher.
In doing so, we were able to express core arithmetical statements such as “m n”. It
could be explored in future work whether we are able to define modal concepts such
as necessity and possibility so that ETCS could serve not only as a groundwork for
mathematics but meta-mathematics as well.

Having developed the theory of arithmetic over naturals and integers, we wish to
consider in future work a construction of the rationals, reals, and complex numbers. A
construction of the rationals would be similar to our construction of the integers, but
with a di�erent lifting function. However, a construction of the real numbers would
involve a di�erent construction considering infinite sequences based on exponential
sets, which would go beyond what we have considered in this paper.

Note

1. This follows by applying Propositions 2.4.3 and 2.6.6 of Halvorson. Suppose x 2 1
`

N
then either x = i0(id1) or there exists n 2 N such that x = i1(n). It follows either
z q s(x) = (z q s � i0) � id1 = z � id1 = z or z q s(x) = (z q s � i1) � n = s � n.

References

[1] Burali-Forti, C., “Una questione sui numeri transfiniti,” Rendiconti del Circolo Matem-

atico di Palermo (1884-1940), vol. 11 (1897), pp. 154–164.

[2] Church, A., “An unsolvable problem of elementary number theory,” American journal

of mathematics, vol. 58 (1936), pp. 345–363.

[3] Halvorson, H., The Logic in Philosophy of Science, Cambridge University Press, 2019.

[4] Hatcher, W. S., The Logical Foundations of Mathematics, Pergamon, 1982. DOI:
https://doi.org/10.1016/C2013-0-05962-2.

[5] Lawvere, F. W., “An elementary theory of the category of sets,” Proceedings of the

National academy of Sciences of the United States of America, vol. 52 (1964), p. 1506.

[6] Leinster, T., “Rethinking set theory,” The American Mathematical Monthly, vol. 121
(2014), pp. 403–415.

[7] Linnebo, Ø., and R. Pettigrew, “Category theory as an autonomous foun-
dation,” Philosophia Mathematica, vol. 19 (2011), pp. 227–254. URL
https://doi.org/10.1093/philmat/nkr024.

37

[8] Osius, G., “Categorical set theory: A characterization of the category of
sets,” Journal of Pure and Applied Algebra, vol. 4 (1974), pp. 79–119. URL
http://www.sciencedirect.com/science/article/pii/0022404974900322.

[9] Peano, G., Arithmetices principia: Nova methodo exposita, Fratres Bocca, 1889.

[10] Von Neumann, J., “Zur einführung der transfiniten zahlen,” Acta Litterarum ac Scien-

tiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum math-

ematicarum, vol. 1 (1923), pp. 199–208.

